ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

Кафедра «Инженерная химия и естествознание»

РАБОЧАЯ ПРОГРАММА

дисциплины Б1.О.9 «ХИМИЯ»

для направления подготовки 08.03.01 «Строительство»

по профилю «Автомобильные дороги»

Форма обучения – очная

«Водоснабжение и водоотведение» «Промышленное и гражданское строительство»

Форма обучения – очная, очно-заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа рассмотрена и утверждена на заседании кафедры «Инженерная химия и естествознание»

Протокол № 4 от 19 декабря 2024 г.

Заведующий кафедрой «Инженерная химия и естествознание» « <u>19» декабря</u> 2024 г.	 В.Я. Соловьева
СОГЛАСОВАНО	
Руководитель ОПОП ВО по профилю «Автомобильные дороги» «19» декабря 2024 г.	 А.Ф. Колос
Руководитель ОПОП ВО по профилю «Водоснабжение и водоотведение» «19» декабря 2024 г.	Н.В. Твардовская
Руководитель ОПОП ВО по профилю «Промышленное и гражданское строительство» «19» декабря 2024 г.	 Г.А. Богданова

1. Цели и задачи дисциплины

Рабочая программа дисциплины *«Химия»* (Б1.О.9) (далее – дисциплина) составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 08.03.01 «Строительство» (далее - ФГОС ВО), утвержденного «31» мая 2017 г., приказ Минобрнауки России № 481 с изменениями, утвержденными приказами Минобрнауки Российской Федерации от 26.11.2020 г. № 1456, от 08.02.2021 №83, от 27.02.2023 г. № 208».

Целью изучения дисциплины «Химия» является формирование у обучающихся целостного естественнонаучного мировоззрения и получение необходимых химических знаний для осуществления профессиональной деятельности.

Для достижения цели дисциплины решаются следующие задачи:

- обучение теоретическим основам знаний о составе, строении и свойствах веществ,
- обучение теоретическим основам знаний о явлениях, которыми сопровождаются превращения одних веществ в другие при протекании химических реакций.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенний

Планируемыми результатами обучения по дисциплине (модулю) является формирование у обучающихся компетенций и/или части компетенций. Сформированность компетенций и/или части компетенций оценивается с помощью индикаторов достижения компетенций.

Индикаторы достижения компетенций	Результаты обучения по дисциплине (модулю)
ОПК-1. Способен решать зада	ачи профессиональной деятельности на основе использова-
ния теоретических и практич	еских основ естественных и технических наук, а также ма-
	тематического аппарата
ОПК-1.1.1. Знает теоретиче-	Обучающийся знает: теоретические и практические ос-
ские и практические основы	новы естественных и технических наук, а также матема-
естественных и технических	тического аппарата для решения задач профессиональной
наук, а также математиче-	деятельности
ского аппарата для решения	
задач профессиональной де-	
ятельности	
ОПК-1.2.1. Умеет решать	Обучающийся умеет: решать задачи профессиональной
задачи профессиональной	деятельности на основе использования теоретических и
деятельности с использова-	практических основ математического аппарата в рамках
нием теоретических и прак-	изучения дисциплины, а также применять на практике
тических основ естествен-	навыки обращения с лабораторным оборудованием и хи-
ных и технических наук, а	мическими реактивами.
также математического ап-	
парата	
ОПК-1.3.1. Владеет теоре-	Обучающийся владеет: теоретическими и практическими
тическими и практическими	основами естественных и технических наук, а также ма-
основами естественных и	тематического аппарата в объеме, необходимом для ре-
технических наук, а также	шения задач профессиональной деятельности
математического аппарата в	

Индикаторы достижения компетенций	Результаты обучения по дисциплине (модулю)
объеме, необходимом для решения задач профессио-	
нальной деятельности	

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина относится к обязательной части, формируемой участниками образовательных отношений блока 1 «Дисциплины (модули)».

4. Объем дисциплины и виды учебной работы

Для очной формы обучения

Вид учебной работы	Всего часов
Контактная работа (по видам учебных занятий)	72.
В том числе:	12
– лекции (Л)	32
– практические занятия (ПЗ)	-
– лабораторные работы (ЛР)	16
Самостоятельная работа (СРС) (всего)	20
Контроль	4
Форма контроля (промежуточной аттестации)	3
Общая трудоемкость: час / з.е.	72/2

Для очно-заочной формы обучения (все профили, кроме профиля «Автомобильные дороги»)

Вид учебной работы	Всего часов
Контактная работа (по видам учебных занятий)	72
В том числе:	
– лекции (Л)	14
– практические занятия (ПЗ)	-
– лабораторные работы (ЛР)	14
Самостоятельная работа (СРС) (всего)	40
Контроль	4
Форма контроля (промежуточной аттестации)	3
Общая трудоемкость: час / з.е.	72/2

Примечание: «Форма контроля» – зачет (3)

5. Структура и содержание дисциплины

5.1. Разделы дисциплины и содержание рассматриваемых вопросов Для очной формы обучения

Nº	Наименование раз-	Содержание раздела	Индикаторы до- стижения компе-
п/п	дела дисциплины	Содержание раздела	тенций

		,	
1	Основы химической термодинамики	Лекция 1. Энергетические эффекты химических процессов и фазовых переходов. Термодинамические функции. Самостоятельная работа. Рассчитайте ΔH^0_{298} и ΔG^0_{298} реакций гидратации основных минералов портландцемента в стандартных условиях и определите последовательность протекания реакций гидратации (6 часов) (разд.8 п.8.5 [1]).	ОПК-1.3.1.
2	Химическая кинетика и равновесие	Лекция 2. Скорость химических реакций, влияние на нее различных факторов. Химическое равновесие в гомогенных реакциях. Смещение равновесия, принцип Ле-Шателье. Лабораторная работа 1. Гидролиз солей и сдвиг химического равновесия. Самостоятельная работа. Кислотные и основные свойства поверхности твердого тела. (разд.8 п.8.5 [2])	ОПК-1.2.1.
3	Строение атома	Лекция 3. Квантово-механическая модель атома. Квантовые числа, принципы заполнения атомных орбиталей. Самостоятельная работа. Изменение размера атома в пределах группы и периода и влияние размера атома на его подвижность, диффузионную и реакционную активность. (разд.8 п.8.5 [3])	ОПК-1.1.1.
4	Периодический закон и периодическая система элементов Д.И. Менде- леева	Лекция 4. Периодический закон и периодическая система элементов Д.И. Менделеева. Электронные формулы, семейства, электронные аналоги элементов. Лабораторная работа 2. Определение молярной массы эквивалента вещества. Самостоятельная работа. Привести примеры s-, p- и d- твердых природных или техногенных материалов – рекомендуемых в качестве заполнителей при создании бетона и их возможное влияние на свойства бетона. (6 часов) (разд.8 п.8.5 [3])	ОПК-1.1.1.
5	Химическая связь и строение молекул	Лекция 5. Основные типы химических связей. Ковалентная, ионная, металлическая, водородная связи и	ОПК-1.2.1.

		их особенности. Понятие о методе молекулярных орбиталей. Самостоятельная работа. Рассмотреть образование контактов между образующимися гидросиликатами кальция, типа 2CaO·SiO ₂ ·2H ₂ O и s-, р- по поверхности твердого заполнителя. (разд.8 п.8.5 [1])	
6	Учение о растворах	Лекция 6. Общие свойства растворов. Способы выражения концентрации растворов. Лабораторная работа 3. Произведение растворимости Самостоятельная работа. Способы обеззараживания воды от ионов тяжелых металлов с учетом показателя произведения растворимости. Тяжелые металлы характеризуются каким показателем плотности. (разд.8 п.8.5 [1])	ОПК-1.3.1.
7	Электролитическая диссоциация	Лекция 7. Сильные и слабые электролиты. Водородный показатель. Произведение растворимости. Гидролиз солей. Жесткость природной воды. Лабораторная работа 4. Жесткость природной воды. Самостоятельная работа. Какие растворимые соли присутствуют в морской воде, в речной и грунтовой и какое они оказывают негативное влияние на бетонные сооружения. (разд.8 п.8.5 [2])	ОПК-1.3.1.
8	Химия металлов.	Лекция 8. Металлы. Строение, свойства. Электродные потенциалы. Окислительно-восстановительные свойства веществ. Самостоятельная работа. Рассмотреть достоинства т недостатки стальной арматуры и композитной полимерной арматуры, например базальтовой для бетонных сооружений. (разд.8 п.8.5 [1])	ОПК-1.1.1.
9	Электрохимические системы	Лекция 9. Химические источники тока, гальванические элементы. Закон Фарадея Лабораторная работа 5. Электрохимия Самостоятельная работа. Современные источники тока — батарейки	ОПК-1.2.1.

		(солевые, щелочные, серебряно- цинковые, литиевые) и топливный элемент – высокоэффективные энер- гоустановки, в частности для косми- ческих агрегатов. (6 часов) (разд.8 п.8.5 [2])	
10	Коррозия металлов и способы защиты от коррозии.	Лекция 10. Коррозия металлов, способы защиты от коррозии. Взаимодействие металлов с кислотами. Лабораторная работа 6. Коррозия металлов. Самостоятельная работа. Современные способы защиты металлической арматуры при помощи композитного полимерного материала с целью сохранения физико-механических свойств металла и устойчивого повышения его долговечности. (разд.8 п.8.5 [1])	ОПК-1.3.1.
11	Дисперсные системы и коллоидные растворы	Лекция 11. Дисперсные системы и их классификация. Коллоидное состояние вещества, коллоидные растворы. Самостоятельная работа. Отличие молекулярных растворов от коллоидных. Эффективность коллоидных растворов разной природы, дисперсии которых имеют наноразмер (1100) нм и их влияние на реакционную активность цементсодержащей системы. (6 часов) (разд.8 п.8.5 [2])	ОПК-1.1.1.
12	Способы получения дисперсных систем	Лекция 12. Процесс диспергирования. Пептизация. Способы получения коллоидных растворов. Строение коллоидной частицы, понятие гранулы и мицеллы. Коагуляция коллоидов. Самостоятельная работа. Эффективный промышленный способ коллоидных растворов методом катионирования (достоинства и недостатки). (разд.8 п.8.5 [1])	ОПК-1.2.1.
13	Аналитическая химия.	Лекция 13. Классификация методов анализа. Качественный и количественный анализы. Лабораторная работа 7. Рентгенофазовый анализ. Самостоятельная работа. Качественный анализ, подтверждающий	ОПК-1.3.1.

		наличие углекислотной, магнезиальной или сульфатной коррозии эксплуатируемого бетона. (разд.8 п.8.5 [2])	
14	Современная идентификация веществ	Лекция 14. Химический, физический и физико-химический методы анализа. Специфические реакции. Самостоятельная работа. Физико-химические методы исследования — рентгенофазовый, ИК-Фурье, дифференциально-термический и калориметрический метод. (6 часов) (разд.8 п.8.5 [1])	ОПК-1.1.1.
15	Основы органической химии и химии высокомолекулярных соединений (ВМС).	Лекция 15. Основные понятия органической химии, используемые в химии ВМС. Аминокислоты, пептиды, белки. Основные понятия и способы получения ВМС. Самостоятельная работа. Строение высокомолекулярных соединений и их влияние на физико-механические характеристики формирующейся структуры бетона. (6 часов) (разд.8 п.8.5 [2])	ОПК-1.1.1.
16	Полимеры	Лекция 16. Свойства полимеров и их использование. Лабораторная работа 8. Полимеры. Самостоятельная работа. Поликарбоксилатные полимеры — основа создания высокоэффективных химических добавок для бетона. (разд.8 п.8.5 [1])	ОПК-1.3.1.

Для очно-заочной формы обучения: (все профили, кроме профиля «Автомобильные дороги»)

№ п/п	Наименование раз- дела дисциплины	Содержание раздела	Индикаторы до- стижения компе- тенций
1	Основы химической термодинамики	Лекция 1. Энергетические эффекты химических процессов и фазовых переходов. Термодинамические функции. Самостоятельная работа. Рассчитайте ΔH^0_{298} и ΔG^0_{298} реакций гидратации основных минералов портландцемента в стандартных условиях и определите последовательность протекания реакций гидратации (10 часов) (разд.8 п.8.5 [1]).	ОПК-1.3.1.

2	Химическая кинетика и равновесие	Лекция 2. Скорость химических реакций, влияние на нее различных факторов. Химическое равновесие в гомогенных реакциях. Смещение равновесия, принцип Ле-Шателье. Лабораторная работа 1. Гидролиз солей и сдвиг химического равновесия. Самостоятельная работа. Кислотные и основные свойства поверхности твердого тела. (разд.8 п.8.5 [2])	ОПК-1.2.1.
3	Строение атома	Самостоятельная работа. Квантово-механическая модель атома. Квантовые числа, принципы заполнения атомных орбиталей. Изменение размера атома в пределах группы и периода и влияние размера атома на его подвижность, диффузионную и реакционную активность. (8 часов) (разд.8 п.8.5 [3])	ОПК-1.1.1.
4	Периодический закон и периодическая система элементов Д.И. Менделеева	Лекция 3. Периодический закон и периодическая система элементов Д.И. Менделеева. Электронные формулы, семейства, электронные аналоги элементов. Самостоятельная работа. Привести примеры s-, p- и d- твердых природных или техногенных материалов – рекомендуемых в качестве заполнителей при создании бетона и их возможное влияние на свойства бетона. (6 часов) (разд.8 п.8.5 [3])	ОПК-1.1.1.
5	Химическая связь и строение молекул	Самостоятельная работа. Основные типы химических связей. Ковалентная, ионная, металлическая, водородная связи и их особенности. Понятие о методе молекулярных орбиталей. Рассмотреть образование контактов между образующимися гидросиликатами кальция, типа 2CaO·SiO ₂ ·2H ₂ O и s-, p- по поверхности твердого заполнителя. (8 часов) (разд.8 п.8.5 [1])	ОПК-1.2.1.
6	Учение о растворах	Самостоятельная работа. Общие свойства растворов. Способы выражения концентрации растворов. Способы обеззараживания воды от ионов тяжелых металлов с учетом показателя произведения раствори-	ОПК-1.3.1.

		T.		
		мости. Тяжелые металлы характери-		
		зуются каким показателем плотно-		
		сти. (6 часов) (разд.8 п.8.5 [1])		
		Лекция 4. Сильные и слабые элек-		
		тролиты. Водородный показатель.		
		Произведение растворимости. Гид-		
		ролиз солей. Жесткость природной		
		воды.		
		Лабораторная работа 2. Жесткость		
7	Электролитическая	природной воды.	ОПК-1.3.1.	
,	диссоциация	Самостоятельная работа. Какие	OHK 1.5.1.	
		_		
		растворимые соли присутствуют в		
		морской воде, в речной и грунтовой		
		и какое они оказывают негативное		
		влияние на бетонные сооружения.		
		(разд.8 п.8.5 [2])		
		Самостоятельная работа. Ме-		
		таллы. Строение, свойства. Элек-		
		тродные потенциалы. Окисли-		
		тельно-восстановительные свойства	ОПК-1.1.1.	
8	Химия металлов.	веществ. Рассмотреть достоинства т	O111X-1.1.1.	
		недостатки стальной арматуры и		
		композитной полимерной арматуры,		
		например базальтовой для бетонных		
		сооружений. (разд.8 п.8.5 [1])		
		Лабораторная работа 3. Электро-		
		ХИМИЯ		
		Самостоятельная работа. Химиче-		
		ские источники тока, гальваниче-		
		ские элементы. Закон Фарадея Со-		
_	Электрохимические си-	временные источники тока – бата-	ОПК-1.2.1.	
9	стемы	рейки (солевые, щелочные, сереб-		
		ряно-цинковые, литиевые) и топлив-		
		ный элемент – высокоэффективные		
		энергоустановки, в частности для		
		космических агрегатов. (6 часов)		
		(разд.8 п.8.5 [2])		
		Лекция 5. Коррозия металлов, спо-		
		собы защиты от коррозии. Взаимо-		
		действие металлов с кислотами.		
		Лабораторная работа 4. Коррозия		
	T.C.	металлов.		
1.0	Коррозия металлов и	Самостоятельная работа. Совре-	OFT 1 2 1	
10	способы защиты от	менные способы защиты металличе-	ОПК-1.3.1.	
	коррозии.	ской арматуры при помощи компо-		
		зитного полимерного материала с		
		целью сохранения физико-механи-		
		ческих свойств металла и устойчи-		
		вого повышения его долговечности.		
		(разд.8 п.8.5 [1])		

_			1
11	Дисперсные системы и коллоидные растворы	Лекция 6. Дисперсные системы и их классификация. Коллоидное состояние вещества, коллоидные растворы. Самостоятельная работа. Отличие молекулярных растворов от коллоидных. Эффективность коллоидных растворов разной природы, дисперсии которых имеют наноразмер (1100) нм и их влияние на реакционную активность цементсодержащей системы. (4 часов) (разд.8 п.8.5 [2])	ОПК-1.1.1.
12	Способы получения дисперсных систем	Самостоятельная работа. Процесс диспергирования. Пептизация. Способы получения коллоидных растворов. Строение коллоидной частицы, понятие гранулы и мицеллы. Коагуляция коллоидов. Эффективный промышленный способ коллоидных растворов методом катионирования (достоинства и недостатки). (8 часов) (разд. 8 п. 8.5 [1])	ОПК-1.2.1.
13	Аналитическая химия.	Самостоятельная работа. Классификация методов анализа. Качественный и количественный анализы. Качественный анализы. Качественный анализ, подтверждающий наличие углекислотной, магнезиальной или сульфатной коррозии эксплуатируемого бетона. (разд.8 п.8.5 [2])	ОПК-1.3.1.
14	Современная идентификация веществ	Самостоятельная работа. Химический, физический и физико-химический методы анализа. Специфические реакции. Физико-химические методы исследования — рентгенофазовый, ИК-Фурье, дифференциально-термический и калориметрический метод. (6 часов) (разд.8 п.8.5 [1])	ОПК-1.1.1.
15	Основы органической химии и химии высокомолекулярных соединений (BMC).	Лекция 7. Основные понятия органической химии, используемые в химии ВМС. Аминокислоты, пептиды, белки. Основные понятия и способы получения ВМС. Самостоятельная работа. Строение высокомолекулярных соединений и их влияние на физико-меха-	ОПК-1.1.1.

		нические характеристики формирующейся структуры бетона. (4 часов) (разд.8 п.8.5 [2])	
16	Полимеры	Самостоятельная работа. Свойства полимеров и их использование. Поликарбоксилатные полимеры — основа создания высокоэффективных химических добавок для бетона. (6 часов) (разд.8 п.8.5 [1])	ОПК-1.3.1.

5.2. Разделы дисциплины и виды занятийДля очной формы обучения:

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	CPC	Всего
1	Основы химической термодинамики	2	0	0	2	4
2	Химическая кинетика и равновесие	2	0	2	2	6
3	Строение атома	2	0	0	2	4
4	Периодический закон и периодическая система элементов Д.И. Менделеева	2	0	2	0	4
5	Химическая связь и строение молекул	2	0	0	2	4
6	Учение о растворах	2	0	2	2	6
7	Электролитическая диссоциация	2	0	2	2	6
8	Химия металлов.	2	0	0	2	4
9	Электрохимические системы	2	0	2	2	6
10	Коррозия металлов и способы защиты от коррозии.	2	0	2	2	6
11	Дисперсные системы и коллоидные растворы	2	0	0	0	2
12	Способы получения дисперсных систем	2	0	0	0	2
13	Аналитическая химия.	2	0	2	0	4
14	Современная идентификация веществ	2	0	0	2	4
15	Основы органической химии и химии высокомолекулярных соединений (BMC).	2	0	0	0	2
16	Полимеры	2	0	2	0	4
	Итого	32	0	16	20	68
Контроль					4	
Всего (общая трудоемкость, час.)				72		

Для очно-заочной формы обучения: (все профили, кроме профиля «Автомобильные дороги»)

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	СРС	Всего
1	Основы химической термодинамики	2	0	2	6	8
2	Химическая кинетика и равновесие	2	0	2	5	9
3	Строение атома	0	0	0	0	0
4	Периодический закон и периодическая система элементов Д.И. Менделеева	2	0	2	6	10

№	Наименование раздела дисциплины	Л	ПЗ	ЛР	СРС	Всего
п/п	^					
5	Химическая связь и строение молекул	0	0	0	0	0
6	Учение о растворах	0	0	0	0	0
7	Электролитическая диссоциация	2	0	2	5	9
8	Химия металлов.	0	0	0	0	0
9	Электрохимические системы	0	0	2	5	7
10	Коррозия металлов и способы защиты	2	0	2	5	9
10	от коррозии.	2	U	2	3	9
11	Дисперсные системы и коллоидные	2	0	2	5	9
11	растворы		U		3	,
12	Способы получения дисперсных си-	0	0	0	0	0
12	стем	U	U	U	U	U
13	Аналитическая химия.	0	0	0	0	0
14	Современная идентификация веществ	0	0	0	0	0
	Основы органической химии и химии					
15	высокомолекулярных соединений	2	0	2	3	7
	(BMC).					
16	Полимеры	0	0	0	0	0
	Итого	14	0	14	40	68
Контроль					4	
Всего (общая трудоемкость, час.)				72		

6. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Оценочные материалы по дисциплине являются неотъемлемой частью рабочей программы и представлены отдельным документом, рассмотренным на заседании кафедры и утвержденным заведующим кафедрой.

7. Методические указания для обучающихся по освоению дисциплины

Порядок изучения дисциплины следующий:

- 1. Освоение разделов дисциплины производится в порядке, приведенном в разделе 5 «Содержание и структура дисциплины». Обучающийся должен освоить все разделы дисциплины, используя методические материалы дисциплины, а также учебно-методическое обеспечение, приведенное в разделе 8 рабочей программы.
- 2. Для формирования компетенций обучающийся должен представить выполненные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, предусмотренные текущим контролем успеваемости (см. оценочные материалы по дисциплине).
- 3. По итогам текущего контроля успеваемости по дисциплине, обучающийся должен пройти промежуточную аттестацию (см. оценочные материалы по дисциплине).

8. Описание материально-технического и учебно-методического обеспечения, необходимого для реализации образовательной программы по дисциплине

8.1. Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой бакалавриата, укомплектованные специализированной учебной мебелью и оснащенные оборудованием и техническими средствами обучения,

служащими для представления учебной информации большой аудитории: настенным экраном (стационарным или переносным), маркерной доской, мультимедийным проектором (стационарным).

Все помещения, используемые для проведения учебных занятий и самостоятельной работы, соответствуют действующим санитарным и противопожарным нормам и правилам.

Для проведения лабораторных работ используются лаборатории кафедры (ауд. 3-120,3-121) оборудованная следующими приборами/специальной техникой/установками используемыми в учебном процессе:

- столы;
- титровальные столы;
- лабораторная посуда.

Помещения для самостоятельной работы обучающихся (ауд. 3-116, 3-117, 3-236, 3-235),оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

- 8.2. Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:
 - MS Office;
 - Операционная система Windows;
 - Антивирус Касперский;
- Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ».
- 8.3. Обучающимся обеспечен доступ (удаленный доступ) к современным профессиональным базам данных:
- Электронно-библиотечная система издательства «Лань». [Электронный ресурс]. URL: https://e.lanbook.com/ Режим доступа: для авториз. пользователей;
- Электронно-библиотечная система ibooks.ru («Айбукс»). URL: https://ibooks.ru / Режим доступа: для авториз. пользователей;
- Электронная библиотека ЮРАЙТ. URL: https://urait.ru/— Режим доступа: для авториз. пользователей;
- Единое окно доступа к образовательным ресурсам каталог образовательных интернет-ресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования». URL: http://window.edu.ru/ Режим доступа: свободный.
- Словари и энциклопедии. URL: http://academic.ru/ Режим доступа: свободный.
- Научная электронная библиотека "КиберЛенинка" это научная электронная библиотека, построенная на парадигме открытой науки (Open Science), основными задачами которой является популяризация науки и научной деятельности, общественный контроль качества научных публикаций, развитие междисциплинарных исследований, современного института научной рецензии и повышение цитируемости российской науки. URL: http://cyberleninka.ru/ Режим доступа: свободный.
- 8.4. Обучающимся обеспечен доступ (удаленный доступ) к информационным справочным системам:
- Национальный Открытый Университет "ИНТУИТ". Бесплатное образование. [Электронный ресурс]. URL: https://intuit.ru/ Режим доступа: свободный.
- 8.5. Перечень печатных и электронных изданий, используемых в образовательном процессе:
- 1. Масленникова Л.Л., Степанова И.В., Байдарашвили М.М. Выполнение тестовых работ по дисциплине химия Учебное пособие / Санкт-Петербург, 2020.

- 2. Л. Х. Аскарова, В. В. Вайтнер, О. А. Неволина, Е. В. Коняева Химия: учебное пособие: Рекомендовано методическим советом Уральского федерального университета для студентов вуза; Министерство науки и высшего образования Российской Федерации, Уральский федеральный университет им. первого Президента России Б. Н. Ельцина. Екатеринбург: Издательство Уральского университета, 2020. 160 с. ISBN 978-5-7996-3091-1.
- 3. А.В. Шевельков, М.Е. Тамм Неорганическая химия. Учебник для высшей школы (Лаборатория знаний). 2021. 591 с.
- 8.6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», используемых в образовательном процессе:
- Электронная информационно-образовательная среда. [Электронный ресурс]. URL: https://sdo.pgups.ru Режим доступа: для авториз. пользователей;
- Министерство экономического развития Российской Федерации [Электронный ресурс]. URL: http://www.economy.gov.ru Режим доступа: свободный;
- Электронный фонд правовой и нормативно-технической документации URL: http://docs.cntd.ru/ Режим доступа: свободный.
 - Электронная среда: my.pgups.ru
- Личный кабинет ЭИОС [Электронный ресурс]. URL: my.pgups.ru Режим доступа: для авториз. пользователей

Разработчик рабочей программы, к.т.н., доцент	 И.В. Степанова
« <u>19» декабря</u> 2024 г.	